Dynamic Programming and Stochastic Control
Dynamic Programming and Stochastic Control
The course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). We will consider optimal control of a dynamical system over both a finite and an infinite number of stages. This includes systems with finite or infinite state spaces, as well as perfectly or imperfectly observed systems. We will also discuss approximation methods for problems involving large state spaces. Applications of dynamic programming in a variety of fields will be covered in recitations.
Duration: Not defined
Level: Graduate
Certification: No
Cost: Free
Language: English
Type: Self-Paced
Please note: these courses are provided by external sources, links are not actively managed or regularly updated, content might be moved or unavailable.